How did we develop detailed and complex mathematical models that could explain these natural phenomena? By a concerted effort from scientists around the world, who meticulously collected data from each occurrence of the event and systematically observed them. We still cannot predict when and where such astronomical events will occur in the sky.

But we understand to an extent the nature of GRBs, supernovae and gravitational waves. How? Because we have not dismissed the phenomena or the people who observed them. We studied them. Astronomers have tools, so they can share the data they collected, even if some question their claim. Similarly, we need tools to observe UAP; radar, thermal, and visual observations will be immensely helpful. We must repeat here that this is a global phenomenon. Perhaps some, or even most, UAP events are simply classified military aircraft, or strange weather formations, or other misidentified mundane phenomena. However, there are still a number of truly puzzling cases that might be worth investigating.


Of course, not all scientists need to make UAP investigation a part of their research portfolio. For those who do, discarding the taboo surrounding this phenomenon would help in developing interdisciplinary teams of motivated individuals who can begin genuine scientific inquiry.

A template to perform a thorough scientific investigation can be found in James McDonald’s paper “Science in Default.” While he entertains the conclusion that these events could be extraterrestrials (which we do not subscribe to), McDonald’s methodology itself is a great example of objective scientific analysis. And this is exactly what we as scientists can do to study these events.

As Sagan concluded at the 1969 debate, “scientists are particularly bound to have open minds; this is the lifeblood of science.” We do not know what UAP are, and this is precisely the reason that we as scientists should study them.